ARTIGO

Novas tecnologias

AUTOR: Clayson Marlei Figueiredo

FOTO: Por Konstantini Tronin; Shutterstock

O uso de aeronaves remotamente pilotadas em ações relacionadas aos incêndios florestais

REFERÊNCIAS:
AERONES. Firefighting. Acessado em 20 de abril de 2018.

ALEXIS, K., NIKOLAKOPOULOS, G., TZES, A., DRITSAS, L. Coordination of helicopter UAVs for aerial forest-fire surveillance. In: Applications of intelligent control to engineering systems. Springer Netherlands, 2009. p. 169-193.

ARRUE, B.C., OLLERO, A., MARTÍNEZ-DE DIOS, J.R. 2000. An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intell. Syst. 15(3): 64-73, 2000.

BOSCH, I., SERRANO, A., VERGARA, L. Multisensor network system for wildfire detection using infrared image processing. Sci. World J., Article ID 402196, 2013.

CBC News. “Fort McMurray wildfire costliest insured disaster in Canadian history,” in, July 7, 2016, <http://www.cbc.ca/news/canada/edmonton/fort-mcmurray-wildfire-costliestinsured-disaster-in-canadian-history-at-nearly-3-6b-1.3668602>. Acessado em 19 de abril de 2018

ÇELIK, T., OZKARAMANLI, H., DEMIREL, H. Fire pixel classification using fuzzy logic and statistical color model. In Proceedings of the International Conference on Acoustic Speech Signal Processing (ICASSP), Hawaii, 15-20 April 2007. pp. I-1205-I-1208, 2007b.

ÇELIK, T., DEMIREL, H. Fire detection in video sequences using a generic color model. Fire Saf. J. 44(2): 147-158, 2009.

ÇETIN, A.E., DIMITROPOULOS, K., GOUVERNEUR, B., GRAMMALIDISB, N., GUNAYA, O., HABIBOGˇLUA, Y.H., TOREYIND, B.U., VERSTOKTE, S. Video fire detection — review. Digit. Signal Process. 23(6): 1827-1843, 2013.

CHEN, T., WU, P., CHIOU, Y. 2004. An early fire-detection method based on image processing. In Proceedings of the International Conference on Image Processing, 24-27 October 2004. pp. 1707-1710, 2004.

CHEN, T.H., YIN, Y.H., HUANG, S.F., YE, Y.T.. The smoke detection for early fire-alarming system based on video processing. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Pasadena, California, 18-20 December 2006. pp. 427-430, 2006.

DANTAS, G.S .F.M. Enxame de VANTS para a detecção de incêndios Florestais. Recife, 2014.

FT SISTEMAS. FT200-FH Poder máximo sob seu comando. <http://ftsistemas.com.br/ft-200-fh/>. Acessado em 18 de abril de 2018.

GONZÁLEZ-JORGE, H. et al. Low-Altitude Long-Endurance Solar Unmanned Plane for Forest Fire Prevention: Application to the Natural Park of Serra do Xures (spain). ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, p. 135-139.

GUNAY, O., TAS DEMIR, K., UG˘ UR TOREYIN, B., ÇETIN, A.E. Video based wildfire detection at night. Fire Saf. J. 44(6): 860-868, 2009.

GUNAY, O., TOREYIN, B.U., KOSE, K., CETIN, A.E.  Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video. IEEE Trans. Image Process. 21(5): 2853-2865, 2012.

HAM, S., KO, B., NAM, J. Fire-flame detection based on fuzzy finite automation. In: Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE, 2010. p. 3919-3922.

HOU, J., QIAN, J., ZHAO, Z., PAN, P., e ZHANG, W. Fire detection algorithms in video images for high and large-span space structures. In: Image and Signal Processing, 2009. CISP`09. 2nd International Congress On. IEEE, 2009. p. 1-5.

IBAMA, I. B. de Meio Ambiente e dos R. N. R. Monitoramento – Prevfogo. 2014. <http://www.ibama.gov.br/prevfogo/monitoramento>. Acessado em 15 de abril de 2018.

INPE, I. N. P. E. Portal do Monitoramento de Queimadas e Incêndios. 2012. . Acessado em 20 de abril de 2018.
KUMAR, M., COHEN, K., HOMCHAUDHURI, B.  Cooperative Control of Multiple Uninhabited Aerial Vehicles for Monitoring and Fighting Wildfires, Journal of Aerospace Computing, Information, and Communication, Vol. 8, No. 1 (2011), pp. 1-16.

LI, M., XU, W., XU, K., FAN, J., HOU, D. Review of fire detection technologies based on video images. J. Theor. Appl. Inf. Technol. 49(2): 700-707, 2013.

MAHDIPOUR, E. e DADKHAH, C. Automatic fire detection based on soft computing techniques: review from 2000 to 2010. Artificial intelligence review, v. 42, n. 4, p. 895-934, 2014.

MARTINEZ-DE DIOS, J. R.; OLLERO, A. A new training-based approach for robust thresholding. In: Automation Congress, 2004. Proceedings. World. IEEE, 2004. p. 121-126.

MARTINEZ-DE DIOS, J.R., RAMIRO, J., MERINO, L., OLLERO, A.. Fire detection using autonomous aerial vehicles with infrared and visual cameras. In Proceedings of the 16th IFAC World Congress. Czech Republi, 2005.

MARTINEZ-DE DIOS, J. R., ANDRÉ, J. C., GONÇALVES, J. C., ARRUE, B. C., OLLERO, A., e VIEGAS, D. X. Laboratory fire spread analysis using visual and infrared images. International Journal of Wildland Fire, v. 15, n. 2, p. 179-186, 2006.

MARTINEZ-DE DIOS, J. R., ARRUE, B. C., OLLERO, A., MERINO, L. e GÓMEZ-RODRIGUES, F. Computer vision techniques for forest fire perception. Image and vision computing, v. 26, n. 4, p. 550-562, 2008.

MARTINEZ-DE DIOS, J. R., MERINO, L., CABALLERO, F. e OLLERO, A l. Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors, v. 11, n. 6, p. 6328-6353, 2011.

MEHTA, A., Solar aircraft: Future need. International Journal of Advanced Engineering Technology, III(I), pp. 43 – 48, 2012.

MERINO, L., CABALLERO, F., MARTÍNEZ-DE DIOS, J.R., e OLLERO, A. Cooperative fire detection using unmanned aerial vehicles. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), Busan, South Korea, 18-22 April 2005. IEEE. pp. 1884-1889, 2005.

MERINO, Luis CABALLERO, F., MARTÍNEZ-DE DIOS, J.R., FERRUZ, J. e OLLERO, A: Application to automatic detection of forest fires. Journal of Field Robotics, v. 23, n. 3â€Â4, p. 165-184, 2006.

MERINO, L., CABALLERO, F., MARTÍNEZ-DE DIOS, J.R., MAZA, I.,OLLERO, A. Automatic forest fire monitoring and measurement using unmanned aerial vehicles. In Proceedings of the 6th International Congress on Forest Fire Research. Edited by D.X. Viegas. Coimbra, Portugal, 2010.

OLLERO, A., MERINO L., Control and perception techniques for aerial robotics. Annual Reviews in Control, 28, Issue 2, pp. 167-178, 2004.

PASTOR, E., ÁGUAEDA, A., ANDRADE-CETO, J., MUNOZ, M., PEREZ, Y., PLANAS, E. Computing the rate of spread of linear flame fronts by thermal image processing. Fire Saf. J. 41(8): 569-579, 2006.

ROSSI, L., MOLENIER, T., AKHLOUFI, M., TISON, Y., PIERI, A. A 3D vision system for the measurement of the rate of spread and the height of fire fronts. Meas. Sci. Technol, 2010.

RUDZ, S., CHETEHOUNA, K., HAFIANE, A., SERO-GUILAUME, O.,  LAURENT, H. On the evaluation of segmentation methods for wildland fire. In Advanced concepts for intelligent vision systems. Edited by J. Blanc-Talon, W. Philips, D. Popescu, and P. Scheunders. Springer, Heidelberg, Berlin. pp. 12-23, 2009.

SHAHBAZI, M., THÉAU, J., MÉNARD, P. Recent applications of unmanned aerial imagery in natural resource management. GIScience & Remote Sensing, v. 51, n. 4, p. 339-365, 2014.

SHARIFI, F., ZHANG, Y.M., AGHDAM, A.G. Forest fire detection and monitoring using a network of autonomous vehicles. In The 10th International Conference on Intelligent Unmanned Systems (ICIUS 2014), 29 September – 1 October 2014, Montreal, Quebec, Canada, 2014.

SHARIFI, F., CHAMSEDDINE, A., MAHBOUBI, H., ZHANG, Y.M., AGHDAM, A. G. A distributed deployment strategy for a network of cooperative autonomous vehicles, IEEE Trans. Contr. Syst. Technol. 23(2): 737-745, 2015a.

SHARIFI, F., MIRZAEI, M., ZHANG, Y.M., GORDON, B.W. Cooperative multivehicle search and coverage problem in an uncertain environment. Unmanned Systems, 3(1): 35-47, 2015b.

SURIT, S., CHATWIRIYA, W. Forest fire smoke detection in video based on digital image processing approach with static and dynamic characteristic analysis. In Proceedings of the 1st ACIS/JNU International Conference on Computers, Networks, Systems, and Industrial Engineering, Jeju Island, South Korea, 23-25 May 2011. IEEE. pp. 35-39, 2011.

SWARMNOID. Swarmnoid project. 2006. . Acessado em 18 de maio de 2018.

TOREYIN, B.U., DEDEOG LU, Y., CETIN, A.E. Flame detection in video using hidden Markov models. In Proceedings of the IEEE International Conference on Image Processing, 11-14 September 2005.

TOREYIN, B.U., DEDEOG LU, Y., GUDUKBAY, U., CETIN, A.E. 2006a. Computer vision based method for real-time fire and flame detection. Pattern Recogn. Lett. 27(1): 49-58.2006a.

TOREYIN, B.U., DEDEOG LU, Y., CETIN, A.E. Contour based smoke detection in video using wavelets. In Proceedings of the 14th European Signal Processing Conference, Florence, Italy, 4-8 September 2006. pp. 123-128, 2006b.

VIPIN, V. Image processing based forest fire detection. International Journal of Emerging Technology and Advanced Engineering, v. 2, n. 2, p. 87-95, 2012.

YU, C.Y., ZHANG, Y.M., FANG, J., WANG, J.J. Texture analysis of smoke for real-time fire detection. In The 2nd International Workshop on Computer Science and Engineering, Qingdao, China, 28-30 October 2009. IEEE. pp. 511-515, 2009.

YU, C.Y., JUN, F., JINJUN, W., & YONGMING, Z. Video fire smoke detection using motion and color features. Fire technology, v. 46, n. 3, p. 651-663, 2010.

YUAN, C, ZHANG, Y. M. LIU, Z. X., “A survey on technologies for automatic forest fire monitoring detection and fighting using unmanned aerial vehicles and remote sensing techniques”, Canadian Journal of Forest Research, vol. 45, no. 7, pp. 783-792, 2015.

YUAN, Chi. Automatic Fire Detection Using Computer Vision Techniques for UAV-based Forest Fire Surveillance. 2017. Tese de Doutorado. Concordia University.

WIEDINMYER, C. e NEFF, J. C., Estimates of CO2 from Fires in the United States: Implications for Carbon Management, Carbon Balance Management, Vol. 2, No. 10, 2007.

ZHANG, Y.M., and JIANG, J. Bibliographical review on reconfigurable faulttolerant control systems. Annu. Rev. Control, 32(2): 229-252, 2008.

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui